Leczenie ubytków kostnych w furkacjach korzeni. Część III. Inżynieria tkankowa – nadzieje na przyszłość

Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!

Cena: 5.40 PLN (z VAT)

Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.

Kup artykuł
Treatment of bone defects in root furcations. Part III. Tissue engineering – hope for the future

Bartłomiej Górski

Streszczenie
Regeneracja tkanek przyzębia (GTR) wymaga obecności komórek progenitorowych, przestrzeni dla rozwijających się tkanek i molekuł sygnalizujących, które regulują podziały mitotyczne i różnicowanie się komórek. Kluczowa wydaje się kontrola „wyścigu tkankowego”. Obecnie obserwuje się wzrost zainteresowania potencjalnym wykorzystaniem czynników wzrostu. Z inżynierią tkankową, która łączy ze sobą komórki, rusztowanie zewnątrzkomórkowe i molekuły sygnalizujące, wiążą się bardzo duże oczekiwania we wszystkich dziedzinach medycyny odtwórczej i stomatologii. Możliwe, że terapia z użyciem komórek macierzystych pozwoli w przyszłości przezwyciężyć niedogodności i „słabe strony” sterowanej regeneracji tkanek przyzębia.
Celem pracy jest przedstawienie współczesnej wiedzy i trendów w badaniach dotyczących czynników wzrostu i inżynierii tkankowej w szeroko rozumianym leczeniu periodontologicznym, a w szczególności w leczeniu zajętych furkacji korzeni.

Hasła indeksowe: ubytki w furkacjach korzeni, zapalenie przyzębia, czynniki wzrostu, osocze bogatopłytkowe, komórki progenitorowe

Summary
Regeneration of periodontal tissue (GTR) requires the presence of progenitor cells, space for the developing tissues and signalizing molecules that regulate mitotic divisions and cell differentiation. It appears that control of the “tissue race” is a key feature. At present interest in the potential use of growth factors can be observed. Great expectations in all aspects of restorative medicine and dentistry are awaited with tissue engineering which connects cells, extracellular scaffolding and signalizing molecules. It is possible that therapy using stem cells will in the future allow the overcoming of disadvantages and “weak aspects” of guided tissue regeneration of the periodontal tissues.
The aim of the study was to present contemporary trends in studies involving growth factors and tissue engineering in the widely understood concept of periodontal treatment, and, especially in the treatment of involved root furcations.
 
Key words: bony defects in root furcations, periodontal inflammation, growth factors, platelet rich plasma, progenitor cells

Piśmiennictwo
1. Nevins M. i wsp.: Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J. Periodontol., 2005, 76, 12, 2205-2215.
2. Giannobile W.V., Somerman M.J.: Growth and amelogenin-like factors in periodontal wound healing. A systemic review. Ann. Periodontol., 2003, 8, 1, 193-204.
3. Kim J. i wsp.: Bone regeneration is regulated by wnt signaling. J. Bone Miner. Res., 2007, 22, 12, 1913-1923.
4. Wu X., Shi W., Cao X.: Multiplicity of BMP signaling in skeletal development. Ann. NY Acad. Sci., 2007, 1116, 29-49.
5. Leboy P.S.: Regulating bone growth and development with bone morphogenetic proteins. Ann. NY Acad. Sci., 2006, 1068, 14-18.
6. Westendorf J.J., Kahler R.A., Schroeder T.M.: Wnt signaling in osteoblasts and bone diseases. Gene. 2004, 341, 19-39.
7. Hughes F.J. i wsp.: Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000., 2006, 41, 1, 48-72.
8. Mouri Y. i wsp.: Differential gene expression of bone-related proteins in epithelial and fibroblastic cells derived from human periodontal ligament. Cell Biol. Int., 2003, 27, 7, 519-524.
9. Takayama S. i wsp.: Periodontal regeneration by FGF-2 (bFGF) in primate models. J. Dent. Res., 2001, 80, 12, 2075-2079.
10. Oates T.W., Rouse C.A., Cochran D.L.: Mitogenic effects of growth factors on human periodontal ligament cells in vitro. J. Periodontol., 1993, 64, 2, 142-148.
11. Howell T.H. i wsp.: A phase I/II clinica trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J. Periodontol., 1997, 68, 12, 1186-1193.
12. Sporn M.B., Roberts A.B.: Transforming growth factor-β: recent progress and new challenges. J. Cell Biol., 1992, 119, 5, 1017-1021.
13. Assoian R.K. i wsp.: Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature. 1984, 309, 5971, 804-806.
14. Lekovic V. i wsp.: Comparison of platelet-rich plasma, bovine porous bone mineral, and guided tissue regeneration versus platelet-rich plasma and bovine porous bone mineral in the treatment of intrabony defects: a recent study. J. Periodontol., 2002, 73, 2, 198-205.
15. Marx R.E. i wsp.: Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1998, 85, 6, 638-646.
16. Okuda K. i wsp.: Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol., 2003, 74, 6, 849-857.
17. Camargo P. i wsp.: A reentry study on the use of bovine porous bone mineral, GTR, and platelet-rich plasma in the regenerative treatment of intrabony defects in humans. Int. J. Periodontics Restorative Dent., 2005, 25, 1, 49-59.
18. Wikesjo U.M.E., Niveus R.E., Selvig K.E.: significance of early healing events on periodontal repair. A review. J. Periodontol., 1992, 63, 3, 158-165.
19. Gottlow J.: Periodontal regeneration. In: Lang N.P., Karring T. (eds). Proceedings of the 1st European Workshop in Periodontology, pp. 72-192. 1994, London: Quintessence publishing company.
20. El-Sharkawy i wsp.: Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J. Periodontol., 2007, 78, 4, 661-669.
21. Eby B.W.: Platelet-rich plasma: harvesting with a single-spin centrifuge. J. Oral Implantol., 2002, 28, 6, 297-301.
22. Sonnleitner D., Huemer P., Sullivan D.Y.: A simplified technique for producing platelet-rich plasma and platelet concentrate for intraoral bone grafting techniques: a technical note. Int. J. Oral Maxillofac. Implants, 2000, 15, 6, 879-882.
23. Appel T.R. i wsp.: Comparison of three different preparations of platelet concentrates for growth factor enrichment. Clin. Oral Implants Res., 2002, 13, 5, 522-528.
24. Weibrich G., Kleis W.K.: Curasan PRP kit vs. PCCS PRP system: Collection efficiency and platlet counts of two different methods for the preparation of platelet-rich plasma. Clin. Oral Implants Res., 2002, 13, 4, 437-443.
25. Weibrich G. i wsp.: The Harvest Smart PreP system versus the Friadent-Schutze platelet-rich plasma kit. Clin. Oral Implants Res., 2003, 14, 2, 233-239.
26. Trombelli L., Farina R.: Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J. Clin. Periodontol., 2008, 35 (Suppl. 8), 117-135.
27. Lekovic V. i wsp.: Effectiveness of a combination of platelet-rich plasma, bovine porous bone mineral and guided tissue regeneration in the treatment of mandibular grade II molar furcations in humans. J. Clin. Periodontol., 2003, 30, 8, 746-751.
28. Pradeep A.R. i wsp.: A randomized clinical trial of autologous platelet-rich plasma in the treatment of mandibular degree II furcation defects. J. Clin. Periodontol., 2009, 36, 7, 581-588.
29. Simonpietri C.J.J. i wsp.: Guided tissue regeneration associated with bovine-derived anorganic bone in mandibular class IIfurcation defects. 6-month results at re-entry. J. Periodontol., 2000, 71, 6, 904-911.
30. Jepsen S. i wsp.: A randomized clinical trial comparing Enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part I: study design and results for primary outcomes. J. Periodontol., 2004, 75, 8, 1150-1160.
31. Mansouri S.S. i wsp.: Treatment of mandibular molar class II furcation defects in humans with bovine porous bone mineral in combination with plasma rich in growth factors. J. Dent. (Tehran), 2012, 9, 1, 41-49.
32. Lafzi A. i wsp.: Clinical comparison of autogenous bone graft with and without plasma rich in growth factors in the treatment of grade II furcation involvement of mandibular molars. J. Dent. Res. Dent. Clin. Dent. Prospects, 2013, 7, 1, 22-29.
33. Suaid F.F. i wsp.: Platelet-rich plasma in the treatment of class II furcation defects: a histometrical study in dogs. J. Appl. Oral Sci., 2012, 20, 2, 162-169.
34. Choukroun J. i wsp.: Platelet-rich fibrin (PRF): a second generation platelet concentrate: Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 101, 3, 37-44.
35. Sanchez A.R., Sheridan P.J., Kupp L.I.: Is platelet-rich plasma the perfect enhancement factor? A current review. Int. J. Oral Maxillofac. Implants, 2003, 18, 1, 93-103.
36. Sharma A., Pradeep A.R.: Autologous platelet-rich fibrin in the treatment of mandibular degree II furcation defects: a randomized clinical trial. J. Periodontol., 2011, 82, 10, 1396-1403.
37. Bajaj P. i wsp.: Comparative evaluation of autologous platelet-rich fibrin and platelet-rich plasma in the treatment of mandibular degree II furcation defects: a randomized clinical trial. J. Periodontol Res., 2013 Jan 14. doi: 10.1111/jre.12040. [Epub ahead of print]
38. Persidis A.: Tissue engineering. Nat. Biotechnol., 1999, 17, 5, 508-509.
39. Bartold P.M. i wsp.: Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000, 2006, 41, 1, 123-135.
40. Luan X. i wsp.: Neural crest lineage segregation: a blueprint for periodontal regeneration. J. Dent. Res., 2009, 88, 9, 781-791.
41. McCulloch C.A.G. i wsp.: Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. Anat. Record., 1987, 219, 3, 233-242.
42. Seo B. i wsp.: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet., 2004, 364, 9429, 149-155.
43. Tuch B.E.: Stem cells – a clinical update. Aust. Fam. Physician, 2006, 35, 9, 719-721.
44. Rai B. i wsp.: Biomarkers of periodontitis in oral fluids. J. Oral Sci., 2008, 50, 1, 53-56.
45. Hosoya A. i wsp.: Alveolar bone regeneration of subcutaneously transplanted rat molar. Bone, 2008, 42, 2, 350-357.
46. Liu Y. i wsp.: Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells, 2008, 26, 4, 1065-1073.
47. Lang H., Schüler N., Nolden R.: Attachment formation following replantation of cultured cells into periodontal defects- a study in minipigs. J. Dent. Res., 1998, 77, 2, 393-405.
48. Zheng Y. i wsp.: Stem cells from deciduous tooth repair mandibular defects in swine. J. Dent. Res., 2009, 88, 3, 249-254.
49. Suaid F.F.: Autologus periodontal ligament cells in the treatment of class II furcation defects: a study in dogs. J. Clin. Periodontol., 2011, 38, 5, 491-498.
50. Suaid F.F. i wsp.: Autologous periodontal ligament cells in the treatment of class III furcation defects: a study in dogs. J. Clin. Periodontol., 2012, 39, 4, 377-384.
51. Akbay A. i wsp.: Periodontal regenerative potential of autogenous periodontal ligament grafts in class II furcation defects. J. Periodontol., 2005, 76, 4, 595-604.
52. Feng F. i wsp.: Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis., 2010, 16, 1, 20-28.
53. Iwata T. i wsp.: Validation of human periodontal ligament-derived cells as reliable source of cytotherapeutic use. J. Clin. Periodontol., 2010, 37, 12, 1088-1099.
54. Pozzobon M., Ghionzoli M., De Coppi P.: ES, iPS, MSC, and AFS cells. Stem cells exploitation for pediatric surgery: current research and perspective. Pediatr. Surg. Int., 2010, 26, 1, 3-10.
55. Solter D.: From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet., 2006, 7, 4, 319-327.
56. Fong C.Y., Gauthaman K., Bongso A.: Teratomas from pluripotent stem cells: a clinical hurdle. J. Cell Biochem., 2010. 111, 4, 769-781.
57. Wu D.C., Boyd A.S., Wood K.J.: Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells, 2008, 26, 8, 1939-1950.
58. Inanç B., Elçin A.E., Elçin Y.M.: In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surface. Tissue Eng. Part A, 2009, 15, 3427-3435.
59. Elçin Y.M., Inanç B., Elçin A.E.: Human embryonic stem cell differentiation on periodontal ligament fibroblasts. Method. Mol. Biol., 2010, 584, 269-281.
60. Yang J.R. i wsp.: Transplantation of embryonic stem cells improves the regeneration of periodontal furcation defects in a porcine model. J. Clin. Periodontol., 2013, 40, 4, 364-371.
61. Su Z. i wsp.: Early homing behavior of Stro-1-mesenchyme-like cells derived from human embryonic stem cells in an immunocompetent xenogeneic animal model. Biochem. Biophys. Res. Commun., 2010, 394, 3, 616-622.
62. Takahashi K., Yamanaka S.: Inducion of pluripotent cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126, 4, 663-676.
63. Okita K., Ichisaka T., Yamanaka S.: Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448, 7151, 313-317.
64. Liu S.P. i wsp.: Induced pluripotent stem (iPS) cell research overview. Cell Transplant., 2011, 20, 1, 15-19.
65. Siqueira da Fonseca S.A. i wsp.: Human immature dental pulp stem cells contribution to developing Morse embryos: production of human/ mouse preterm chimaeras. Cell Prolif., 2009, 42, 2, 132-140.
66. d’Aquino R. i wsp.: Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. Eur. Cells Mater., 2011, 22, 21, 304-316.