Wpływ materiałów stosowanych do wypełniania kanałów na tkanki okołowierzchołkowe. Przegląd piśmiennictwa

Wpływ materiałów stosowanych do wypełniania kanałów na tkanki okołowierzchołkowe. Przegląd piśmiennictwa

Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!

Cena: 12.50 PLN (z VAT)

Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.

Kup artykuł

Influence of root canal filling materials on periapical tissues – a literature review

Kacper Nijakowski, Amadeusz Hernik, Anna Surdacka

Streszczenie
Biozgodność materiałów stosowanych do wypełniania kanałów korzeni zębów ma istotny wpływ na sukces leczenia endodontycznego i stan tkanek okołowierzchołkowych. Celem pracy jest przegląd najnowszych artykułów naukowych, które poruszają temat oddziaływań materiałów do wypełnień kanałów na tkanki okołowierzchołkowe, ze szczególnym uwzględnieniem ich przepchnięcia poza kanał. Porównano ćwieki gutaperkowe i resilonowe, uszczelniacze (m.in. Apexit Plus, AH Plus, Endomethasone, MTA Fillapex, iRoot, EndoSequence) oraz agregat mineralnych trójtlenków (MTA).

Abstract
Biocompatibility of materials used for root canal obturation has a significant impact on the success of endodontic treatment and the condition of periapical tissues. The aim of this study is to review the latest scientific articles concerning the influence of root canal filling materials on periapical tissues, with particular emphasis on the material extrusion beyond the root canal. The gutta-percha and Resilon points, sealers (i.a. Apexit Plus, AH Plus, Endomethasone, MTA Fillapex, iRoot, EndoSequence) and the mineral trioxide aggregate (MTA) were compared.

Hasła indeksowe: biozgodność, gutaperka, MTA, Resilon, uszczelniacze

Key words: biocompatibility, gutta-percha, MTA, Resilon, sealers


PIŚMIENNICTWO
1. Cheng Y.A. i wsp.: Influence of cyclic heating on physical property and biocompatibility of α- and β-form gutta-percha. J. Formos. Med. Assoc., 2014, 113, 8, 498-505.
2. Economides N. i wsp.: Comparative study of the cytotoxic effect of Resilon against two cell lines. Braz. Dent. J., 2008, 19, 4, 291-295.
3. Pawińska M. i wsp.: A laboratory study evaluating the pH of various modern root canal filling materials. Adv. Clin. Exp. Med., 2017, 26, 3, 387-392.
4. Ghanaati S. i wsp.: Tissue reaction to sealing materials: different view at biocompatibility. Eur. J. Med. Res., 2010, 15, 11, 483-492.
5. Belladonna F.G. i wsp.: Biocompatibility of a self-adhesive gutta-percha-based material in subcutaneous tissue of mice. J. Endod., 2014, 40, 11, 1869-1873.
6. Barborka B.J. i wsp.: Long-term clinical outcome of teeth obturated with Resilon. J. Endod., 2017, 43, 4, 556-560.
7. Badole G.P. i wsp.: A comparative evaluation of cytotoxicity of root canal sealers: an in vitro study. Restor. Dent. Endod., 2013, 38, 4, 204-209.
8. Konjhodzic-Prcic A. i wsp.: Evaluation of biocompatibility of root canal sealers on L929 fibroblasts with multiscan EX spectrophotometer. Acta Inform. Med., 2015, 23, 3, 135-137.
9. Ricucci D. i wsp.: Apically extruded sealers: fate and influence on treatment outcome. J. Endod., 2016, 42, 2, 243-249.
10. Senges C. i wsp.: Bacterial and Candida albicans adhesion on different root canal filling materials and sealers. J. Endod., 2011, 37, 9, 1247-1252.
11. Shakya V.K. i wsp.: An in vitro evaluation of antimicrobial efficacy and flow characteristics for AH Plus, MTA Fillapex, CRCS and Gutta Flow 2 Root Canal Sealer. J. Clin. Diagn. Res., 2016, 10, 8, ZC104-108.
12. Sipert C.R. i wsp.: In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland cement and EndoRez. Int. Endod. J., 2005, 38, 8, 539-543.
13. Tuğ Kılkış B. i wsp.: Neurotoxicity of various root canal sealers on rat sciatic nerve: an electrophysiologic and histopathologic study. Clin. Oral Investig., 2015, 19, 8, 2091-2100.
14. Silva L.A. i wsp.: Sealapex Xpress and RealSeal XT feature tissue compatibility in vivo. J. Endod., 2014, 40, 9, 1424-1428.
15. Malik G. i wsp.: Comparative evaluation of intracanal sealing ability of mineral trioxide aggregate and glass ionomer cement: An in vitro study. J. Conserv. Dent., 2013, 16, 6, 540-545.
16. Jhamb S., Nikhil V., Singh V.: An in vitro study to determine the sealing ability of sealers with and without smear layer removal. J. Conserv. Dent., 2009, 12, 4, 150-153.
17. Collado-González M. i wsp.: Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J. Endod., 2017, 43, 5, 816-822.
18. Ruparel N.B. i wsp.: Effect of endodontic sealers on trigeminal neuronal activity. J. Endod., 2014, 40, 5, 683-687.
19. Brackett M.G. i wsp.: Cytotoxicity of endodontic sealers after one year of aging in vitro. J. Biomed. Mater. Res. B. Appl. Biomater., 2012, 100, 7, 1729-1735.
20. Eldeniz A.U. i wsp.: Cytotoxicity of new resin-, calcium hydroxide- and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines. Int. Endod. J., 2007, 40, 5, 329-337.
21. Suzuki P. i wsp.: Tissue reaction of the EndoREZ in root canal fillings short of or beyond an apical foramen like communication. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 109, 5, e94-99.
22. Suzuki P. i wsp.: Tissue reaction to Endométhasone sealer in root canal fillings short of or beyond the apical foramen. J. Appl. Oral Sci., 2011, 19, 5, 511-516.
23. Hasheminia M. i wsp.: In vitro evaluation of the antibacterial activity of five sealers used in root canal therapy. Dent. Res. J. (Isfahan), 2017, 14, 1, 62-67.
24. Batur Y.B., Ersev H.: Five-year follow-up of a root canal filling material in the maxillary sinus: a case report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2008, 106, 4, e54-56.
25. Poveda R. i wsp.: Mental nerve paresthesia associated with endodontic paste within the mandibular canal: report of a case. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102, 5, e46-49.
26. Shetty V. i wsp.: A spectro photometric comparative evaluation of apical sealing ability of three different sealers; calcium hydroxide based, resin based and zinc oxide eugenol based sealers. J. Int. Oral Health., 2015, 7, 2, 25-27.
27. Marin-Bauza G.A. i wsp.: Physicochemical properties of endodontic sealers of different bases. J. Appl. Oral Sci., 2012, 20, 4, 455-461.
28. Vanapatla A. i wsp.: Comparative evaluation of antimicrobial effect of three endodontic sealers with and without antibiotics – an in-vitro study. J. Clin. Diagn. Res., 2016, 10, 4, ZC69-72.
29. Queiroz A.M. i wsp.: Antibacterial activity of root canal filling materials for primary teeth: zinc oxide and eugenol cement, Calen paste thickened with zinc oxide, Sealapex and EndoREZ. Braz. Dent. J., 2009, 20, 4, 290-296.
30. Singh G. i wsp.: An in vitro comparison of antimicrobial activity of three endodontic sealers with different composition. J. Contemp. Dent. Pract., 2016, 17, 7, 553-556.
31. Ahuja L. i wsp.: A comparative evaluation of sealing ability of new MTA based sealers with conventional resin based sealer: an in-vitro study. J. Clin. Diagn. Res., 2016, 10, 7, ZC76-9.
32. Silva E.J., Santos C.C., Zaia A.A.: Long-term cytotoxic effects of contemporary root canal sealers. J. Appl. Oral Sci., 2013, 21, 1, 43-47.
33. Jafari F. i wsp.: Antibacterial activity of MTA Fillapex and AH 26 root canal sealers at different time intervals. Iran. Endod. J., 2016, 11, 3, 192-197.
34. Du T. i wsp.: Combined antibacterial effect of sodium hypochlorite and root canal sealers against enterococcus faecalis biofilms in dentin canals. J. Endod., 2015, 41, 8, 1294-1298.
35. Yuan Z. i wsp.: Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide. BMC Oral Health., 2018, 18, 1, 56.
36. Chang S.W. i wsp.: In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J. Endod., 2014, 40, 10, 1642-1648.
37. Bi J. i wsp.: iRoot FM exerts an antibacterial effect on Porphyromonas endodontalis and improves the properties of stem cells from the apical papilla. Int. Endod. J., 2018, doi: 10.1111.
38. Sun Y. i wsp.: Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One, 2017, 12, 10, e0186848.
39. Dudeja C. i wsp.: An in vitro comparison of effect on fracture strength, pH and calcium ion diffusion from various biomimetic materials when used for repair of simulated root resorption defects. J. Conserv. Dent., 2015, 18, 4, 279-283.
40. Siboni F. i wsp.: Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int. Endod. J., 2017, 50, Suppl. 2, e120-e136.
41. Saygili G. i wsp.: In vitro cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex. Iran. Endod. J., 2017, 12, 3, 354-359.
42. Rodriguez-Lozano F.J. i wsp.: Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int. Endod. J., 2017, 50, 1, 67-76.
43. Vouzara T. i wsp.: Cytotoxicity of a new calcium silicate endodontic sealer. J. Endod., 2018, 44, 5, 849-852.
44. Camargo R.V. i wsp.: Evaluation of the physicochemical properties of silicone- and epoxy resin-based root canal sealers. Braz. Oral Res., 2017, 31, e72.
45. Singh G. i wsp.: In vitro comparison of antibacterial properties of bioceramic‑based sealer, resin‑based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates. Eur. J. Dent., 2016, 10, 3, 366-369.
46. Rifaey H.S. i wsp.: Comparison of the osteogenic potential of mineral trioxide aggregate and Endosequence root repair material in a 3-dimensional culture system. J. Endod., 2016, 42, 5, 760-765.
47. Pace R. i wsp.: Mineral trioxide aggregate as apical plug in teeth with necrotic pulp and immature apices: a 10-year case series. J. Endod., 2014, 40, 8, 1250-1254.
48. Torabinejad M. i wsp.: Effect of MTA particle size on periapical healing. Int. Endod. J., 2016, 50 Suppl. 2, e3-e8.
49. Wälivaara D.Å. i wsp.: Periapical tissue response after use of intermediate restorative material, gutta-percha, reinforced zinc oxide cement, and mineral trioxide aggregate as retrograde root-end filling materials: a histologic study in dogs. J. Oral Maxillofac. Surg., 2012, 70, 9, 2041-2047.
50. Chang S.W. i wsp.: Long-term observation of the mineral trioxide aggregate extrusion into the periapical lesion: a case series. Int. J. Oral Sci., 2013, 5, 1, 54-57.
51. Asgary S., Fayazi S.: Endodontic surgery of a symptomatic overfilled MTA apical plug: a histological and clinical case report. Iran. Endod. J., 2017, 12, 3, 376-380.
52. Song M. i wsp.: Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell. Restor. Dent. Endod., 2014, 39, 1, 39-44.