Metody badawcze inżynierii materiałowej wykorzystywane w stomatologicznych badaniach doświadczalnych

Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!

Cena: 5.40 PLN (z VAT)

Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.

Kup artykuł
Research methods of material engineering used in dental experimental studies

Aneta Olek, Leszek Klimek, Elżbieta Bołtacz-Rzepkowska


Streszczenie
Nowoczesne metody badawcze inżynierii materiałowej umożliwiają ocenę budowy, struktury i składu chemicznego badanych tkanek na poziomie ultrastrukturalnym. W pracy zaprezentowano możliwości wykorzystania technik spektralnych, analizy dyfraktometrycznej, profilometrii i gęstości radiologicznej w stomatologicznych badaniach doświadczalnych. Przedstawiono badania porównujące zęby ludzkie i zęby innych ssaków, np. zwierząt hodowlanych w aspekcie ich wykorzystania jako substytutu naturalnych zębów ludzkich w testach doświadczalnych.

Hasła indeksowe: zęby bydlęce, zęby ludzkie, skład chemiczny, analiza dyfraktometryczna, gęstość radiologiczna
 
Summary
Modern research methods of material engineering enable evaluation of the build, structure and chemical composition of tissues studied at the ultrastructural level. The study describes the possibilities of using spectral techniques, diffractometry, profilometry and radiological density in dental research studies. The study describes comparative studies of teeth of humans and other mammals e.g. animals bred from the point of view of their usefulness as a substitute for natural human teeth in research studies.
 
Keywords: bovine teeth, human teeth, chemical composition, diffraction analysis, radiodensity

PIŚMIENNICTWO
1. Klimek L.: Nowoczesne metody badań ultrastrukturalnych. Wykorzystanie nowoczesnych metod inżynierii materiałowej w badaniach biomedycznych. Rozprawa habilitacyjna, Uniwersytet Medyczny, Wydział Wojskowo-Lekarski, Łódź, 2005, 9-40.
2. Gutierrez-Salazar M.P., Reyes-Gasga J.: Microhardness and chemical composition of human tooth. Mater. Res., 2003, 6, 367-373.
3. Hueb de Menezes Oliveira M.A. i wsp.: Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Micros. Res. Tech., 2010, 73, 572-577.
4. Cheng L. i wsp.: Effect of compounds of Galla chinensis on remineralization of enamel surface in vitro. Arch. Oral Biol. 2010, 55, 435-440.
5. Souza R.O.A. i wsp.: Analysis of tooth enamel after excessive bleaching: A study using scanning electron microscopy and energy dispersive X-ray spectroscopy. Int. J. Prosthodontics, 2010, 23, 29-32.
6. Ruse N.D. i wsp.: Preliminary surface analysis of etched, bleached and normal bovine enamel. J. Dent. Res., 1990, 69, 1610-1613.
7. Cuy J.L. i wsp.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002, 47, 281-291.
8. Falla-Sotelo F.O. i wsp.; Quinelato A., Mori M., Youssef M.: Analysis and discussion of trace elements in teeth of different animal species. Bras. J. Physics 2005, 35, 761-762.
9. Sakae T., Hirai G.: Calcification and crystallization in bovine enamel. J. Dent. Res. 1982, 61, 57-59.
10. Saito T. i wsp.: In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Caries Res. 2003, 37, 445-449.
11. Xue J. i wsp.: High-resolution X-ray microdiffraction analysis of natural teeth. J. Synchrotron Radiat. 2008, 15, 235-238.
12. Tanaka T. i wsp.: Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction. Caries Res. 2010, 44, 253-259.
13. Yagi N. i wsp.: Evaluation of enamel crystallites in subsurface lesion by microbeam X-ray diffraction. J. Synchrotron Radiat., 2009, 16, 398-404.
14. Suge T. i wsp.: Effect of calcium phosphate precipitation method on acid resistance to apatite powder and bovine tooth. Dent. Mater. J., 2008, 27, 508-514.
15. Taube F. i wsp.: Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J. Dent., 2010, 38, 72-81.
16. Bachmann L., Craievich A.F., Zezell D.M.: Crystalline structure of dental enamel after Ho:YLF laser irradiation. Arch. Oral Biol., 2004, 49, 923-929.
17. Schmalz G. i wsp.: Permeability characteristics of bovine and human dentin under different pretreatment conditions. J. Endod., 2001, 27, 23-30.
18. Attin T. i wsp.: The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: Erosion – abrasion experiments. J. Dent., 2007, 35, 773-777.
19. Wegehaupt F. i wsp.: Is bovine dentine an appropriate substitute for human dentine in erosion/abrasion tests? J. Oral Rehab., 2008, 35, 390-394.
20. Tanaka J.L.O. i wsp.: Comparative analysis of human and bovine teeth: radiographic density. Braz. Oral Res., 2008, 22, 346-351.
21. Fonseca R.B. i wsp.: Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch. Oral Biol., 2004, 49, 919-922.