Zastosowanie biodruku 3D w stomatologii (...)

Zastosowanie biodruku 3D w stomatologii (...)

Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!

Cena: 24.00 PLN (z VAT)

Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.

Kup artykuł
MS 2022; 6: 10-13.


Zastosowanie biodruku 3D w stomatologii - przegląd piśmiennictwa

The use of 3D bioprinting in dentistry - a review of the literature

Agnieszka Chamarczuk, Joanna Falkowska

Streszczenie
Technologia biodruku 3D (bioprinting) staje się narzędziem coraz częściej wykorzystywanym we współczesnej medycynie. W piśmiennictwie jest dużo doniesień opisujących prace nad skutecznym drukowaniem między innymi narządów, tkanek do przeszczepów skóry, chrząstek, kości, protez, czy spersonalizowanych farmaceutyków. Publikacje te skłoniły nas do poszukiwań wykorzystania biodruku 3D w stomatologii. Przeprowadzono analizę piśmiennictwa, wyszukując hasła związane z biodrukiem 3D (bioprinting 3D, bioprinting medicine, bioprinting dentistry, bioprinting tooth) w bazach Medline (PubMed).

Abstract
3D bioprinting technology is becoming an increasingly common tool used in modern medicine. There are many reports in the literature describing the work on effective printing, among others: organs, tissues for the skin, cartilages, bones, prostheses or personalized medications. These publications prompted us to look for the application of 3D bioprinting in dentistry. The literature analysis has been carried out by searching every word associated with 3D bioprinting (bioprinting 3D, bioprinting medicine, bioprinting dentistry, bioprinting tooth) in databases Medline (PubMed).

Hasła indeksowe: biodruk 3D, medycyna regeneracyjna, inżynieria tkankowa, biodrukowany ząb, stomatologia

Key words: bioprinting 3D, regenerative medicine, tissue engineering, bioprinting tooth, dentistry

PIŚMIENNICTWO

  1. Vijayavenkataraman S, Yan W-C, Lu WF i wsp. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018; 132: 296-332.
  2. Trappey AJ, Trappey CV, Lee KL. Tracing the evolution of biomedical 3D printing technology using ontology-based patent concept analysis. Technol Anal Strateg Manag. 2017; 29: 339-352.
  3. Rodriguez-Salvador M, Ruiz-Cantu L. Revealing emerging science and technology research for dentistry applications of 3D bioprinting. Int J Bioprint. 2019; 5(1): 170.
  4. Comb JW, Priedeman WR, Turley PW. FDM technology process improvements. Solid Free Fabr Proc. 1994; 11: 42-49.
  5. Kruth JP, Wang X, Laoui T. Lasers and materials in selective laser sintering. Assem Autom. 2003; 23(4): 357-371.
  6. Murr LE, Gaytan SM, Ramirez DA. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012; 28(1): 1-14.
  7. Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res. 2010; 40: 395-414.
  8. Guillemot F, Souquet A, Catros S i wsp. Laser-assisted cell printing:principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond). 2010; 5(3): 507-515.
  9. Rengier F, Mehndiratta A, von Tengg-Kobligk H i wsp. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010; 5(4): 335-341.
  10. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014; 32(8): 773-785.
  11. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013; 3(1): 10-19.
  12. Albritton JL, Miller JS. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech. 2017; 10(1): 3-14.
  13. Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods. 2008; 14(2): 157-166.
  14. Mandrycky C, Wang Z, Kim K i wsp. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2015; 34(4): 422-434.
  15. Duarte Campos DF, Zhang S, Kreimendahl F i wsp. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration. Connect Tissue Res. 2020; 61(2): 205-215.
  16. Yu H, Zhang X, Song W i wsp. Effects of 3-dimensional bioprinting alginate / gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells. J Endod. 2019; 45(6): 706-715.
  17. Athirasala A, Tahayeri A, Thrivikraman G i wsp. A dentin-derived hydrogel bioink for 3D bioprinting of cell-laden scaffolds for regenerative dentistry. Biofabrication. 2018; 10: 024101.
  18. Han J, Kim DS, Jang H i wsp. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J Tissue Eng. 2019; 10: 2041731419845849.
  19. Sharma S, Srivastava D, Grover S i wsp. Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res. 2014; 8(1): 309-315.
  20. Asaad F, Pagni G, Pilipchuk SP i wsp. 3D-printed scaffolds and biomaterials: review of alveolar bone augmentation and periodontal regeneration applications. Int J. Dent. 2016; 1239842.
  21. Lee U-L, Yun S, Cao H-L i wsp. Bioprinting on 3D printed titanium scaffolds for periodontal ligament regeneration. Cells. 2021; 10(6): 1337.
  22. Dwivedi R, Mehrotra D. 3D bioprinting and craniofacial regeneration. J Oral Biol Craniofac Res. 2020; 10(4): 650-659.
  23. Maroulakos M, Kamperos G, Tayebi L i wsp. Applications of 3D printing on craniofacial bone repair: a systematic review. J Dent. 2019; 80: 1-14.
  24. Tao O, Kort-Mascort J, Lin Y i wsp. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Brasel). 2019; 10(7): 480.

poprzedni artykuł